De hele kolom niet zichtbaar ? Probeer dan eens Ctrl-min
Vierkantswortels en Kwadraten
Square roots and squares
10 \(\small \sqrt 8 + \sqrt{18}\) 11 laatste cijfer kwadraat
12 \(\small \sqrt 2 × \sqrt 2\) 13 kwadraat van \(\frac{\sqrt{2}}{2}\)
14 \(\small x.\sqrt x\) 15 \(\small \sqrt x +\!\sqrt x = \sqrt x.\sqrt x\)
16 \(2 < \sqrt 3 < 3\) 17 vierkantswortel van 72
18 \(2\sqrt3 + 2\sqrt3\) 19 \(\frac {1} {3}\;van\;\;?\;\;is\; \sqrt3 \)
20 \(\sqrt 2 : (-\frac{1}{\sqrt2})\) 21 \(2.3.\sqrt2.\sqrt6 \)
22 \((1\!+\!\sqrt2):(1\!-\!2)\) 28 \(\frac{1}{\sqrt2}\!+\!\frac{1}{\sqrt2} \) JWO2022
24 kwadraat van x−4 25 pos. vierkantsw. van 45
26 {X kwadraat van Y 27 benaderen wortelvorm
28 \(\frac ac\!\!\cdot\!\!\frac bc\!=\! \frac {a.b}{c}|\small \frac ac\!+\! \frac bc\!=\! \frac {a+b}{c}|\small \frac ab\!=\!\frac{a^2}{b^2}\)
30 \(\frac {\sqrt{21}\,+\,\sqrt6} {\sqrt3} \) 31 \(\frac {4\,+\,\sqrt{32}} {8} \)
32 \(\frac {2\,+\,2\sqrt5} {2} \) 33 \(\frac {3\,+\,3\sqrt6} {3} \)
34 \( \frac {6\,+\,\sqrt{20}} {2} \) 35 \( \frac {x} {\sqrt x}+ \frac {\sqrt x}{x} \)
36 \(\frac {x} {\sqrt x}+x \) 37 \(\frac {-4\,-\,\sqrt{32}} {-4} \)
38 \(\frac {\sqrt2} {2}+\sqrt2 \) 39 \(\frac {\sqrt3} {3} + \frac {2} {\sqrt3} \)
40 \(\sqrt{4^4} \) 41 \(\sqrt{16^{16}} \)
42 \(\sqrt{0,36^{\,3}} \) 43 \(\sqrt{16^{36}} \)
44 \(\sqrt{16+\sqrt{16}}\: \approx \) 45 \((\sqrt2\!+\!\sqrt8)^2 \)
46 \((x^2\!-\,9)^2 \) 47 \( (\sqrt5 - 2)^2\)
48 \((5x)^2+5x^2 \) 49 \(3.(-1).(3\sqrt3)^2\)
50 \(\sqrt2.\sqrt3.\sqrt8 \) 51 \( \small 2\!+\!\sqrt2+\sqrt2\!+\sqrt2.\sqrt2\)
52 \(\small \sqrt1.\sqrt2.\sqrt3.\sqrt4\) 53 \(\frac{\sqrt2}{2}.\frac{\sqrt2}{2}+\frac{\sqrt2}{2}+\frac{\sqrt2}{2} \)
54 \((6\sqrt3)^2 - (3\sqrt2)^2 \) 55 \(3\sqrt{27}-2\sqrt{12}+2\sqrt{75}\)
56 f o u t ? 57 alle vijf juist ?
58 2 delen door\(\sqrt2\) 59 helft van kwadraat
60 3 gelijkheden ?_1 61 3 gelijkheden ?_2
62 3 gelijkheden ?_3 63 \(\text{l a t e r} \)
64 4 gelijkheden ?_1 \) 65 4 gelijkheden ?_2
66 5 gelijkheden ?_1 67 5 gelijkheden ?_2
68 5 gelijkheden ?_3 69 5 gelijkheden ?_4
70 5 gelijkheden ?_5 71 \(\text{l a t e r } \)
72 wortel schatten 73 kan berekend worden ?
74 kleinste getal zkn 75 grootste getal zoeken
76 \((2\sqrt{2a})^2\) 77 \( \small \sqrt x+\!\sqrt x+\!\sqrt x=\sqrt x.\sqrt x.\sqrt x\)
78 \(\sqrt a > a\;\;?\) 79 \(\small \sqrt{5^5+5^5+5^5+5^5+5^5} \)
80 \( (\sqrt{20}+\sqrt5) :\! \sqrt5 \) 81 \(\sqrt[3]{27}+\sqrt{36+64}+\sqrt{36.64} \)
82 \(\ a^2 = -3 \Rightarrow \;? \) 83 (88+88)+(88−88)+(88.88)+(88:88)
84 helft van\(\sqrt{32} 85 helft van een vierkantsw.
86 vierkantsw. geh. getal 87 \(\sqrt{2^2.6}-\sqrt{16}-\sqrt6\)
88 \(\text{l a t e r }\) 89 \( (x-\!1)^2\,+\,..?..\,= (x + 1 )^2 \)
90 \( \sqrt{a^2.b^2}\) 91 \(\small (1+3\sqrt2)^2-(1-3\sqrt2)^2\)
92 \(\sqrt{(-x)^2}\) 93 \(\small (\sqrt{10+\sqrt{75}} - \sqrt{10+\sqrt{75}})^2 \)
94 \(\ \sqrt 5 \:\; \nabla \:\,\sqrt 5 \) 95 \(\sqrt{36+64}+\!\sqrt{36.64}+\sqrt{36}+\!\sqrt{64}\)
96 \((3+2\sqrt2)^2 \) 97 \((\sqrt3+1)^4+(\sqrt3-1)^4 \)
98 \((2\sqrt3 -5)^2\) 99 \(\sqrt{3\!+\!\sqrt5}.\sqrt{3\!-\!\sqrt5} \)
A0 \(\sqrt{6-4\sqrt2}\) A1 \(\frac {1} {2\,+\,\sqrt{3}} + \frac {2} {\sqrt{3}\,-\,1}\)
A2 \(\sqrt{6+4\sqrt2}\) A3 \(\frac {1} {1-\sqrt{2022}} + \frac {1} {1+\sqrt{2022}}\)(J)
A4 \((2\sqrt2+\sqrt3)^2\) A5 \(\bigl[4+\!\sqrt7)-(4\!-\!\sqrt7\bigr]^2 \)
A6 \(3\,(2\sqrt3\,.\,4\sqrt5)\) A7 \(2 < \sqrt x < 3 \;\; en \;\; 1 < \sqrt x < 2 \)
A8 \(\sqrt[4]{1 miljoen} \) A9 \(\small \sqrt6+\!2\leftrightarrow 2\sqrt2+\!\sqrt3\leftrightarrow \sqrt7\!+\!2\)
B0 \(\sqrt5 + \sqrt{45}=\sqrt n \) B1 \(\scriptsize \sqrt{ 3^{n-4}\!+3^{n-3}\!+3^{n-2}\!+3^{n-1}\!+3^n}=33\)
B2 30 keer B3 meerdere vierkantswortels
B4 \(\large \frac {\sqrt2} {\frac32}-\frac{\frac{\sqrt2}{3}}{2} \) B5 \(\frac 1x + x = 3\\\frac{1}{x^2}+x^2 =\;? \)
B6 \((x - \frac 1x)^2 \) B7 \(2.(\,3.\sqrt{18}\,)(\,2.\sqrt3\,) \)
B8 \(\sqrt{4-\sqrt{12}}\) new B9 \(\scriptsize\sqrt n+\!\sqrt n +\! \sqrt n =\sqrt n.\sqrt n.\sqrt n\) new
90 L a t e r 90 \(\small\sqrt{e^2-6e+9}+\sqrt{e^2+6e+9}\)new


Meer oefeningen met
vierkantswortels : zie
4de jaar - vierkantswortels

telling vanaf woe 2 okt 2013